© Adis International Limited. All rights reserved.

Comparative Tolerability of Systemic Treatments for Plaque-Type Psoriasis

Stacy L. McClure, Jayme Valentine and Kenneth B. Gordon

Department of Dermatology, Northwestern University Medical School, Chicago, Illinois, USA

Contents

Abstract	3
1. Psoralen with Ultraviolet A	4
2. Methotrexate	7
3. Acitretin	9
4. Cyclosporin	1
5. Combination Therapies	3
6. Rotational Strategies	3
7. Conclusion	3

Abstract

Psoriasis is a chronic, debilitating skin condition that affects millions of people and is attributed to both genetic and environmental factors. Topical therapy is generally considered to be the first-line treatment of psoriasis. However, many patients do not respond to topical therapy or have disease so extensive that topical therapy is not practical. For these patients, systemic therapy is indicated. Presently, there are four available systemic treatments, psoralen with ultraviolet A (PUVA), methotrexate, oral retinoids (acitretin), and cyclosporin. Unfortunately, all of these treatments have significant potential adverse effects. PUVA may acutely cause nausea, pruritis and sunburn. More chronic and concerning is the development of PUVA lentigines, ocular complications and skin cancer. Nonmelanoma skin cancer has been directly linked to PUVA; however, the association with melonoma is more elusive. Methotrexate use most notably carries the risk of hepatic fibrosis and cirrhosis, which is not always evident on liver function tests. Other more rare, but potentially life-threatening adverse effects include pancytopenia, lymphoproliferative disorders and acute pneumonitis. The addition of folic acid may help to reduce the risk of increasing liver enzymes and haematological toxicity seen in those taking methotrexate. Both methotrexate and oral retinoids are teratogenic and should never be used in pregnancy. Oral retinoids are probably the least effective available systemic medication for the treatment of plaque psoriasis. The effects are improved with the addition of other systemic therapies. Acitretin has replaced the formerly used etretinate primarily because of the significantly shorter half-life. The adverse effects are generally mild and reversible, making the drug fairly safe for long-term use. The most commonly seen adverse effects include elevated serum lipids, generalised xerosis and alopecia. Bony abnormalities, while somewhat controversial, have also been described and include diffuse idiopathic skeletal hyperostosis, skeletal calcifications and osteoporosis. Cyclosporin is the most recently approved systemic med-

ication for plaque psoriasis. The nephrotoxicity associated with the use of cyclosporin can be minimised when used in lower doses and for a limited duration. Hypertension is usually mild and can be seen in up to about one-third of patients receiving long-term therapy. Cutaneous and internal malignancies have also been reported with cyclosporin and tend to be correlated with duration of treatment. In this review, we will examine the potential adverse effects with these US Food and Drug Administration-approved treatments in adults, with specific emphasis on the controversies that surround long-term therapy with these agents and their cumulative adverse effects.

Psoriasis is a chronic condition that affects 1 to 3% of the US population.^[5] Approximately 20% of patients with psoriasis have extensive disease that is unresponsive to topical therapy. [6] For these individuals, phototherapy or systemic medications are indicated. These systemic agents may be used alone or in combination with other treatment modalities. However, when approaching systemic treatments for psoriasis, it is important to understand the potential adverse effects of these therapies along with careful laboratory monitoring and patient selection. These are summarised in tables I and II. There are four widely accepted systemic treatments for psoriasis today, psoralen with ultraviolet A treatment (PUVA), systemic retinoids (acitretin), methotrexate, and cyclosporin. There are other systemic therapies for the treatment of plaque psoriasis including mycophenolate mofetil, hydroxycarbamide (hydroxyurea) and fumaric acid esters; however, these are not commonly used and there is a lack of data regarding their tolerability and safety. Children who require systemic therapy represent a minority and systemic therapy should only be used in extreme circumstances and with caution. Cyclosporin and methotrexate can be used in children, but little data exists in this age group.^[7] In the elderly, most systemic therapies can be used relatively safely as long as there is not significant hepatic or renal impairment. Because of a decreased glomerular filtration rate in the elderly, cyclosporin should probably be avoided.

One concept critical to the understanding of the toxicities of the various systemic treatments for psoriasis is the use of rotational therapy. Many authors have pointed to the evidence that many of the most important toxicities of systemic drugs for

psoriasis are related to cumulative exposure to the therapy. Thus, it has been suggested that medications be rotated when a patient requires long-term treatment. In other words, a patient might be started on phototherapy, but then changed to treatment with an oral agent even though the patient might still be responding to the initial treatment in order to lessen the potential exposure risk of the phototherapy. This strategy will be central to our understanding of the clinically significant toxicities reviewed in this paper.

1. Psoralen with Ultraviolet A

PUVA was reported for the treatment of psoriasis back in 1951 but was not approved by the US Food and Drug Administration (FDA) until 1982.[8] PUVA therapy consists of a psoralen, a photosensitising agent, being delivered to the skin and is then being activated by exposure to ultraviolet light. The psoralen most commonly used in the US is methoxsalen (methoxypsoralen) that intercalates into the DNA double helix and forms permanent cross-links within nucleotide pairs when exposed to the appropriate wavelength of ultraviolet light (UVA, wavelength 320 to 335nm). This interaction causes disruption of DNA and an inhibition of cell proliferation and apoptosis in many cell lines, including the type I activated T cells that drive the immune response in psoriasis.^[9] While neither methoxsalen nor UVA light alone have a significant benefit in the treatment of psoriasis, the combination shows significant improvement in psoriasis in about 90% of patients with plaque psoriasis in 20 to 30 treatments. [10] Other forms of phototherapy such as UVB, and bath PUVA may be used, but do not require patients to take oral or

Table I. Laboratory monitoring for systemic psoriasis therapies

	Psoralen with ultraviolet A ^[1]	Methotrexate ^[2]	Retinoids (acitretin) ^[3]	Cyclosporin ^[4]
Baseline	Complete skin assessment Slit-lamp exam of lens and cornea Fundoscopic exam Visual acuity ± LFTs, renal function tests, lupus panel	LFTs Hepatitis panel for HAV, HBV, HCV CBC, platelets Chemical panel Serum creatinine, BUN, potassium Pretreatment liver biopsy in high-risk patients	βHCG CBC, platelets LFTs Fasting lipid profile Renal function tests Urinalysis ± X-ray of wrists, ankles or thoracic spine in long-term treatment ± Ophthalmology	Serum creatinine × 2 BUN, urinalysis Urinary protein Blood pressure × 2 GFR CBC LFTs, bilirubin Fasting lipid panel
Monitoring	Periodic complete skin assessments	LFTs, CBC, platelets qw × 2w, also 5-6d after dose escalation, then q3-4mo	Laboratory tests qmo × 3mo then q3mo	Laboratory tests as above
	Ophthalmology yearly or as needed	Delayed liver biopsy after 3-6mo in low-risk patients Liver biopsy q1.5-2.0g total dose in low-risk patients Liver biopsy q1.0g total dose in high-risk patients	CBC, platelets LFTs Fasting lipid profile Renal function tests ± Urinalysis ± βHCG ± Annual x-rays ± Ophthalmology	Serum creatinine and blood pressure at day 0,15,30, then if stable monthly GFR at 6mo

βHCG = beta human chorionic gonadotropin; BUN = blood-urea nitrogen; CBC = complete blood count; GFR = glomerular filtration rate; HAV = hepatitis A virus infection; HBV = hepatitis B virus infection; HCV = hepatitis C virus infection; LFTs = liver function tests; mo = month(s); qxmo = every x month(s); qx = every week; w = weeks.

injectable medications and are therefore beyond the scope of this article.

The acute adverse effects of PUVA therapy are related to the ingestion of the methoxsalen and local cutaneous effects of the methoxsalen combined with the ultraviolet light exposure. About 10% of patients experience adverse gastrointestinal effects, particularly nausea, after psoralen ingestion.[11] This effect can be reduced by decreasing the dose and/or taking it with food.[11] If necessary, an antiemetic therapy can be added.[12] If these efforts fail to eliminate the nausea, topical or bath PUVA can be substituted or other systemic therapies considered. Other reported adverse gastrointestinal effects include diarrhoea, constipation, and liver function test (LFT) abnormalities, though these effects rarely require the cessation of therapy. Likewise, adverse CNS effects such as headache, insomnia, hyperactivity and depression are usually mild and do not adversely effect treatment outcome.

As would be expected from treatment with a photosensitising agent, acute adverse cutaneous effects are quite common. Most frequently, patients will experience an exaggerated sunburn-like response 48 to 72 hours after a treatment that can last for a number of days.[13] Many factors can influence the likelihood of a PUVA phototoxic reaction including irregular output from the UVA light source and inconsistent intestinal absorption of methoxsalen. When severe phototoxic reactions occur, phototherapy must be discontinued until the erythema subsides.[8] PUVA is relatively contraindicated in patients with photosensitive diseases like lupus erythematosus and should be used with special care in individuals who are receiving photosensitising drugs.[14,15] One phototoxic effect is the potential for a PUVA burn to worsen psoriasis. Patients with psoriasis may develop new and severe

Table II. Contraindications for systemic therapy

PUVA ^[1]	Methotrexate ^[2]	Retinoids ^[3]	Cyclosporin ^[4]
Absolute			
Light sensitising disorders	Pregnancy	Pregnancy	Uncontrolled hypertension
Lactation	Lactation	Lactation	Abnormal renal function
			History/current malignancy
			Hypersensitivity to cyclosporin
Relative			
Pregnancy	Liver dysfunction	Hypercholesterolaemia	Age <18 or >64
Photosensitising medications	Hepatitis	Alcohol abuse	Controlled hypertension
Melanoma	Renal insufficiency	Osteoporosis	Pregnancy
Non-melanoma skin cancers	Severe heme abnormalities	Bony abnormalities	Lactation
Severe organ dysfunction	Immunodeficiencies	Leukopenia	Active infection
	Active serious infection		Immunodeficiencies
	Alcohol abuse		Drug/alcohol abuse
	Hepatotoxic medications		Epilepsy
	History of arsenic therapy		Organ dysfunction
	Diabetes mellitus		Nephrotoxic or cytotoxic medications
	Obesity		Immunosuppressants
	Elderly		Current radiation therapy
			Live attenuated vaccine during therapy

plaques of their disease when the skin is injured, an element of the disease called the Koebner phenomena. ^[16] Thus, patients with a skin injury from a PUVA burn can have an acute and severe worsening of their psoriasis.

Pruritus can be either generalised or localised. The generalised form is secondary to xerosis and is easily treated with emollients. The localised form, referred to as 'PUVA itch' usually occurs in the mid-upper back, is much more intense and is unresponsive to treatment of any kind other than temporarily discontinuing phototherapy. Once the pruritus resolves, PUVA can be restarted at a slightly lower UVA dose. [8] Pruritus is a significant cause for non-compliance with therapy and can lead to discontinuation. [8]

The long-term adverse effects of PUVA therapy are more concerning and include ocular abnormalities and skin cancer. [17] Patients receiving long-term PUVA therapy are at risk for developing cataracts due to the ocular phototoxic effects of the psoralen. However, the relative risk can be reduced to near zero if patients use UV protective wraparound eyeglasses immediately after taking

psoralen during the daylight hours.^[18] Patients are then required to wear opaque occlusive eyewear during UVA exposure for at least 24 hours. In addition, it is probably advisable that patients should have an ophthalmological assessment both prior to and during therapy.^[17]

The most significant risk of PUVA therapy is skin cancer. The association of non-melanoma skin cancer (NMSC), mainly squamous cell carcinoma (SCC), with PUVA has been firmly established. The incidence of squamous cell carcinoma in patients treated with PUVA is related to the cumulative dose.[19-21] In some studies, the incidence of SCC in PUVA-treated patients who have had more than 1000 J/cm².[22,23] Lindelof et al.[23] found the relative risk of SCC in PUVA-treated patients to be 5.6 for men and 3.6 for women. Other studies have found the number of treatments to be of primary importance, with the incidence dramatically increasing with more than 160 to 260 treatments.^[24-26] Stern and Lange^[27] found an 11-fold increase risk in the incidence of SCC in patients receiving more than 250 treatments in comparison with those who received less than 160 treatments. The association of NMSC in PUVA-treated patients and Fitzpatrick skin type has not been firmly established. One study by Stern and Momtaz^[28] found that there was an increased risk of NMSC in patients with Fitzpatrick skin types I and II.^[29] In contrast, there have been several studies that have shown no increased risk associated with skin type.[19,30] Importantly, genital skin has a greater susceptibility and should not be exposed during therapy.^[17,31] Basal cell carcinomas and keratoacanthomas are also reported in conjunction with PUVA therapy, but this association is not as clear as with SCC.[32,33] Additional risk factors include patients who have inadequate responses to PUVA and those that have been treated with prior carcinogenic therapy.^[11,34] Therefore, it is important to try to minimise the cumulative dose of PUVA therapy by finding ways to reduce the exposure of the patient including combination therapy with topical treatments and systemic retinoids.[11] Moreover, avoidance of excess sun exposure along with the use of sunscreens may be of benefit in these patients.

One of the most controversial issues with PUVA therapy is the possibility of an association with malignant melanoma, the most lethal form of skin cancer. It has long been suspected that UVB exposure (280 to 320nm) is a major risk factor for the development of melanoma, as a result of chromosomal damage.[35] However, data on the carcinogenic effects of UVA have been less obvious. DNA damage as a result of UVA radiation has been conclusively demonstrated in mammalian cell culture models by many investigators. [29,36-41] Moreover, the ability to induce melanoma through UVA exposure has been demonstrated in both the Xiphophorus hybrid fish[42] and Monodelphis domestica (opossums).[30] Several studies have demonstrated an association between the use of UVA tanning beds and the subsequent development of melanoma.[43,44] PUVA lentigines, normally occurring 6 to 15 months after the initiation of PUVA and lasting up to 7 years, are dose-dependent and often feature histologically atypical lymphocytes which could suggest a potential to develop into malignant melanoma.[45]

In 1997, Stern et al. [46] reported an increase in the incidence of melanoma identifiable 15 years after the first exposure to PUVA in patients in the US, most notably in those patients who had received more than 250 treatments. In an update to this study, they reported a doubling of diagnosed melanomas, giving a 20-fold increase in the incidence of malignant melanoma from 1990.[47] Concerns about this association have been expressed. Specifically, this study did not include a history of childhood sun exposure, previous history of phototherapy, and exposure to arsenic or methotrexate. There has also been criticism regarding the lack of a control group of patients with psoriasis who did not receive PUVA.[34,48] In support of melanomas occurring after long-term follow-up, Rahman et al.^[49] found that those patients who developed melanoma had not received PUVA in the preceding 5 years. In opposition to this, Lindelof et al.^[23] evaluated the long-term follow up of 4799 patients in Scandinavia after they received high doses of PUVA and found no increased risk for the development of malignant melanoma. These authors felt that the discrepancies might, perhaps, be explained by the differences in PUVA administration between the US and Europe.

Clearly, these epidemiological studies are far from conclusive and warrant the continued search for a possible relationship between UVA and the development of melanoma. We believe it is critical to continue to follow patients who have had more than 200 treatments or greater than 1500J of PUVA therapy. These patients should be followed up every 6 months, for life, with full body skin examination for the possible development of melanoma.

2. Methotrexate

Methotrexate, which was approved by the US FDA for severe psoriasis in 1971 is prescribed predominantly for the treatment of moderate to severe disease. [50] Methotrexate is a synthetic folate analogue that competitively and irreversibly binds to the enzyme dihydrofolate reductase, thus disrupting DNA synthesis and ultimately causing cell death during the S phase of the cell cycle. [51] The

exact mechanism of action has not been fully elaborated but is theorised to act as an immunosuppressant by inhibiting the inflammatory response rather than acting as an antiproliferative agent as previously thought.^[52] Up to 80% of patients with psoriasis will respond to therapy with methotrexate.^[2] Methotrexate can affect multiple different organ systems. It is also efficacious in the treatment of psoriatic arthropathy.

By far the most feared adverse effect of methotrexate is hepatic fibrosis and cirrhosis. Estimates of the frequency of these outcomes vary greatly. The rate of fibrosis is estimated at a rate of 1 to 50% and cirrhosis from 0 to 25%. [53-59] The highest estimates were given by Danish authors who may have reported complications in an older population and those with a greater history of exposure to hepatotoxins, mainly alcohol.^[53] The incidence of hepatotoxicity associated with methotrexate is increased with advanced age, alcohol consumption, diabetes mellitus, obesity and pre-existing liver damage.[54,60] Recent studies done excluding these high-risk patients have found a much lower incidence of liver toxicity. [58,61,62] For those patients who do get cirrhosis, it tends to be relatively nonaggressive. [53,63] Unfortunately, there is no significant correlation between blood chemistries and liver histological evidence of hepatic fibrosis, thereby requiring periodic liver biopsies to evaluate potential disease. [64] Guidelines for monitoring methotrexate include a baseline liver biopsy either prior to treatment for high-risk patients or, in lowrisk patients, a biopsy can be performed after 2 to 4 months of treatment or after a cumulative dose of 1.5g.^[57] A delay in the initial liver biopsy is likely justified because it is important to establish effectiveness and tolerability of methotrexate in low risk patients. Repeat liver biopsies should be performed with each additional 1 to 1.5g cumulative dose depending on individual patient risk factors.[53,57] Some authors have suggested the measurement of serum type III procollagen peptide to detect ongoing fibrosis. [65-67] This test is not organ specific and requires serial monitoring, but if it remains normal, can help to decrease the number of liver biopsies required during treatment with methotrexate. More studies are needed, as this test may eventually greatly reduce the need for liver biopsies.

Of all the adverse effects associated with methotrexate, pancytopenia presents the greatest potential for a fatal outcome. Anaemia, thrombocytopenia and leucopenia can also occur in isolation. It has been estimated that the incidence of haematological toxicity in those patients receiving low-dose methotrexate varies from 3 to 9%.^[68] Agranulocytosis and pancytopenia are generally reversible upon cessation of the drug.^[69] Folinic acid (leucovorin) in high doses can reverse the acute haematological toxicity seen with methotrexate.^[57] Possible risk factors for haematological toxicity include increased methotrexate levels due to drug interactions or to renal failure, or a functional folate deficiency. [68] Supplementing patients with folic acid 1 to 5 mg/day during therapy may be important in limiting haematological toxicity.[57,70] One antirheumatic study demonstrated a reduction in elevated liver enzymes levels with the use of folic acid. [57,71] Importantly, in order to minimise haematological toxicity, it is crucial to avoid potential drug-drug interactions with other drugs that inhibit folate metabolism, particularly sulphonamides, trimethoprim and dapsone.^[72,73] Drugs that increase methotrexate levels by competing for secretion by the proximal tubules should also be avoided, including nonsteroidal anti-inflammatory agents, salicylates, colchicine, probenecid, cephalothin, sulphonamides and penicillin.[68]

Since the primary mechanism of action of methotrexate is the inhibition of lymphocyte function, it is no surprise that adverse effects related to immunosuppression, while rare, have been reported in the form of malignancy and infection.^[74] Although there has been an association of lymphoproliferative disorders (LPD) with methotrexate, there is no reported increased risk of LPD in patients with psoriasis treated with methotrexate, despite a few documented case reports in patients treated for rheumatoid arthritis.^[75-84] Only rarely has lymphoma been associated with methotrexate use in patients with psoriasis.^[85] It has been pos-

tulated that long-term treatment with methotrexate may impair the immune control of Epstein-Barr virus-induced B-cell proliferation and potentially result in LPD. If this is suspected, it is essential to withdraw methotrexate therapy immediately to decrease further risk of immunosuppression. A spontaneous regression of LPD in approximately 50% is expected after withdrawal of the drug. [85] In addition, there have been some studies that have demonstrated an association of methotrexate use and the increased incidence of skin cancer. [19,20]

Acute pneumonitis is rare in patients with psoriasis receiving methotrexate but can occur even at minimal doses and can be fatal.[86] A prevalence of about 5% has been noted for those patients receiving methotrexate for rheumatoid arthritis.[7,86,87] The pathogenesis of methotrexate-induced acute pneumonitis is currently unknown, and there does not seem to be any specific population at risk for this adverse effect.^[86] Chest x-rays and pulmonary function tests have not been useful in screening or diagnosis of this condition.[88] Therefore, a chest x-ray should not be routinely ordered unless a patient has developed symptoms suggestive of pneumonitis.[69] The withdrawal of methotrexate therapy is imperative if this diagnosis is suspected. In addition, starting systemic corticosteroids may be beneficial as long as a bacterial infection has been ruled out.[86]

Both men and women should practice adequate contraception while taking methotrexate, which has been shown to be a potent teratogen and abortifacient. In males it is known to cause reversible oligospermia and defective sperm.^[17] Women should avoid pregnancy for 1 month and men should avoid fathering children for 3 months following cessation of therapy.^[50,69]

3. Acitretin

Oral retinoids have been in use for the treatment of psoriasis since the 1980s. Etretinate was the first of the retinoids introduced for the treatment of severe psoriasis, but was removed from the US market in 1998. Acitretin, the active metabolite of etretinate, was developed in order to minimise toxicity. [89] Retinoids tend to have a slower onset of

action when compared with other systemic therapies like methotrexate and cyclosporin. The retinoids tend to be more effective in inflammatory forms of psoriasis and typically produce only a partial improvement in plaque psoriasis. [90] Because of this lesser efficacy, they tend to work best when combined with UVB, PUVA or other systemic therapies or when used in rotational or sequential regimens. [25,91]

The reason for the adoption of acitretin rather than etretinate was that etretinate has an elimination half-life of about 100 days, compared with approximately 2 days for acitretin. Moreover, etretinate is a much more lipophilic compound and is stored in fat tissue to a much greater degree than acitretin.[92-94] Etretinate can be identified in the blood for years after discontinuation, prolonging the potential adverse effects and interactions. [92,95] Thus, the assumption was that with decreased exposure to the medication, long-term safety issues, primarily teratogenicity, may be reduced. However, acitretin has been shown to be reverse metabolised by endogenous esterases back to etretinate.[96-98] This conversion is potentiated by alcohol consumption. So, while there could be a decrease in the amount of stored retinoid, complete clearance of acitretin is not certain. The adverse effects of retinoids are multiple. However, with the significant exception of teratogenicity, the adverse effects tend to be mild or reversible upon discontinuation of the medication. Importantly, as opposed to other therapies for psoriasis, there are few adverse effects that worsen with cumulative dose making acitretin relatively safe for long-term therapy. Interestingly, retinoids have been used as chemoprevention for premalignant cutaneous diseases including actinic keratoses, arsenical keratoses, oral leucoplakia, Bowen's disease, and in some PUVA induced keratoses. [99-101]

Teratogenicity is probably the most serious adverse effect associated with the use of retinoids. Acitretin is US FDA pregnancy category X (i.e. highly unsafe during pregnancy, and the risk of use outweighs any possible benefit) and has no minimum safe dose for those who are pregnant. It has been shown to produce CNS, bone, craniofacial,

cardiovascular, ocular and auditory abnormalities, with the greatest risk between the third and sixth weeks of gestation.^[102] These abnormalities are as a result of the toxic effect of retinoids on the cephalic neural crest development.[102] There is also an increased incidence of spontaneous abortions and stillbirths. It is imperative that women of childbearing potential adhere to some acceptable form of birth control during the course of acitretin therapy. Because of the known conversion of acitretin to etretinate that is significantly increased by alcohol consumption, it is advisable for these young women to continue with adequate contraception for 2 to 3 years. The minimum alcohol consumption for this conversion is unknown and inadvertent exposure to alcohol containing products may be unforeseeable. Women of child-bearing potential should also be advised not to consume alcohol for 2 months following cessation of therapy as well.[103] Authors have suggested that, due to the teratogenic risk and the difficulty in monitoring patients post-therapy, acitretin should probably not be used in women of child-bearing age.[13,92,95,104] Retinoids do not appear to affect spermatogenesis or sperm morphology, but it remains unclear as to whether the presence of retinoids in seminal fluids might be harmful to a fetus. Therefore, it is has been suggested that men on retinoids use condoms during drug therapy and for at least 1 month following cessation of therapy.^[3] In addition, premature epiphyseal closure in children has been reported with etretinate.[105]

Up to one-third of individuals treated with retinoids will develop elevation in their LFTs^[103,106,107] within about 8 weeks after starting therapy.^[3] Though LFT abnormalities are common, severe hepatic toxicity is rare^[103] and no specific pattern of liver damage has been identified.^[106,108,109] Hepatitis, with increases in AST and ALT occur more frequently than do elevations of lactate dehydrogenase (LDH), alkaline phosphatase, and bilirubin. Cases of hepatic fibrosis and cirrhosis have been reported with the use of oral retinoids but are very rare.^[110] Unlike methotrexate, LFTs tend to correlate with findings on liver biopsy.^[106] Thus, hepatic toxicity may be

monitored with blood tests rather than liver biopsy. [111] Patients with pre-existing liver damage from hepatitis, concurrent or prior use of methotrexate, diabetes mellitus, alcohol abuse, and obesity are at greater risk with the use of retinoids. [103,108] Withdrawal of therapy should be considered when LFTs are greater than three times the upper limit of normal and a decrease in the dose should be considered for those with mild elevations of liver enzymes. Once LFTs return to normal, retinoid therapy may be restarted at lower doses and with frequent laboratory checks.

Increased serum lipids are the most common of the laboratory value abnormalities observed in those receiving systemic retinoid therapy and are generally seen later in therapy.[112] Hypertriglyceridaemia and hypercholesterolaemia have been widely reported with the use of both etretinate and acitretin. Serum triglycerides are reported to be elevated in approximately 30 to 50% of patients, while serum cholesterol is elevated in up to 30% of those taking retinoids.[3,102,110,113] Those patients at greatest risk for these laboratory abnormalities include those with pre-existing hyperlipidaemia, high saturated fat and high cholesterol diets, obesity, diabetes mellitus, heavy smokers and those with alcohol abuse.[102,104] In patients with extremely high triglyceride levels, in the range of 800 to 1000 mg/dl, there is a risk of haemorrhagic pancreatitis.[114] Elevated lipids from retinoid use could also contribute to coronary artery disease if they are allowed to persist over prolonged periods of time.[115] It therefore is important to monitor serum lipids in addition to a baseline check for lipid abnormalities. Lipid control through bodyweight loss, cessation of smoking and alcohol, and a reduction of the dose, or lipid-lowering agents may all be attempted. However, once triglycerides exceed 400 mg/dl, withdrawal of therapy is indicated.^[95] Upon discontinuing therapy, the hyperlipidaemia will usually resolve.[104]

Of the adverse effects of retinoids, mucocutaneous adverse effects probably are the most bothersome to patients and are nearly universal. The most common of the mucocutaneous adverse effects is chelitis, which is dose dependent and occurs in al-

most all individuals.^[92,95] While it is a nuisance to patients, a mild chelitis is the goal of therapy. Generalised xerosis, dry eyes, dry nose, desquamation of the palms and soles, and a sensation of sticky skin have been reported. [10,32,40,116] These adverse effects are generally seen within the first couple of weeks after initiation of therapy, and can be disconcerting for patients. [112] These adverse effects are rarely serious and, in many cases, do not necessitate the withdrawal of therapy. Symptomatic treatment with the use of emollients, topical corticosteroids, and artificial tears in addition to education and reassurance are important factors in patient management.

Ophthalmological referrals become necessary when artificial tears do not correct dry eyes.^[3] Pseudotumour cerebri is a rare, but potentially devastating, adverse effect of retinoids which might be associated with a drug interaction with tetracyclines.^[117,118] Patients reporting visual changes in addition to nausea, vomiting, and headaches should be referred for neurological evaluation immediately. A majority of patients, up to 75%, will experience some degree of diffuse hair loss usually occurring in the third month of therapy.^[104] This hair loss is dose-dependant and reversible with either discontinuation of therapy or a decrease in the dose.^[104]

The only cumulative toxicity thought to occur with oral retinoid therapy is hyperostosis, though the causal relationship between these bony abnormalities and oral retinoid use is controversial. The aetiology of the associated bony effects caused by systemic retinoids remains unclear. The bony abnormalities seen with retinoid use include: progressive calcification of tendons and ligaments, periosteal thickening, seronegative spondyloarthropathies, sacroiliitis, premature epiphyseal plate closure in children and probably osteoporosis. [95,119] The occurrence of osteoporosis with long-term retinoid therapy, however, is controversial.

The individuals at greatest risk of osteoporotic changes are those receiving high dose retinoids for long periods of time.^[119] The elderly and those with pre-existing arthritis and bony abnormalities

may also be at increased risk.[3] Skeletal calcifications in the hips and forearms and osteoarticular aberrations at the level of the thoracic spine have been reported with long-term use of acitretin.[110] Earlier retrospective studies found an increased risk of diffuse idiopathic skeletal hyperostosis in those receiving long-term retinoids.[120-125] However, more recent prospective studies have shown this risk to be much less than previously reported and may largely involve a worsening of pre-existing abnormalities.[126] A prospective study published by Dooren-Greebe et al. [126] found that there was no statistically significant relationship between prolonged oral retinoid therapy and spinal abnormalities. Baseline x-rays and subsequent follow-up x-rays may be warranted, especially if patients become symptomatic or for those patients receiving long-term therapy.[103]

4. Cyclosporin

Cyclosporin was approved for the treatment of psoriasis by the US FDA in 1997 and is thought to be the most effective form of anti-psoriatic therapy with up to 90% of patients responding to the drug.[127] Though cyclosporin is well tolerated by patients, the safety profile of this medication have led most authors to agree that cyclosporin should only be considered in patients who have not responded to topical therapy and are either not candidates for or have not responded to other systemic therapy. Absolute contraindications to the use of cyclosporin include significant renal insufficiency, uncontrolled hypertension, history of malignancy current or cured with the exception of NMSC, and a prior history of any adverse reaction to cyclosporin.[128] In general, the adverse effects associated with the use of cyclosporin are dose-dependent and are reversible upon discontinuation.[129]

The most concerning toxicities include renal toxicity, hypertension, and malignancy. Other adverse effects include gastrointestinal upset, flulike symptoms, upper respiratory tract infections, paresthesias, headaches, gingival hyperplasia, hypertrichosis and electrolyte abnormalities.

The rate at which psoriatic lesions clear with cyclosporin and remain in remission can be related to the severity of disease, the completion of clearance, and maintenance dosages.[130] Cyclosporin has been shown to induce remission in about 90% of patients within 7 to 10 weeks of therapy.^[9] Longer remission times have been shown in patients who undergo maintenance dose therapy, as opposed to those who discontinue cyclosporin immediately after their psoriasis clears. Subsequent withdrawal of drug therapy rapidly leads to the reappearance of lesions to the same extent as before treatment.[131] Patients with more severe psoriasis may take longer to clear, may have shorter remission times, and may never achieve complete clearance. The more thorough the clearing, the longer the remission.^[132] If maintenance dosages are established patients may remain in remission for 6 to 8 months.^[104] The average relapse occurs within 2 weeks to 8 months after discontinuation of therapy.[17,104] Episodes of relapse can be successfully managed by the reintroduction of cyclosporin therapv.[9]

The adverse effect most concerning to physicians using cyclosporin for psoriasis is renal toxicity that may be acute or chronic and is the primary factor which limits the use of this drug for psoriasis. Acute nephrotoxicity is caused by renal vasoconstriction of the afferent arterioles, with a subsequent decrease in glomerular filtration rate (GFR).[133] These acute effects, without structural changes, are reversible with reduction of the dose. Rarely, the acute decrease in GFR is associated with histological changes on kidney biopsy that may not be reversible. Thus, if serum creatinine does not rapidly improve with dose reduction, other forms of therapy should be considered. Chronic nephrotoxicity is a progressive, irreversible, and less clearly dose-related impairment in renal function associated with interstitial fibrosis occurring in some patients after 6 to 12 months of cyclosporine therapy.[134-136] Progression from acute to chronic nephrotoxicity may be due to an increase in endothelin production, leading to increased synthesis and activation of transforming growth factor-β1.[116,137] Tubular epithelial cell vacuolation, atrophy and microcalcification may also be associated with the development of irreversible interstitial fibrosis. Abnormalities in the renin-angiotensin system, renal prostaglandins and adrenergic receptors may also play a role in nephrotoxicity. Indications of renal toxicity include increase of serum creatinine of >30% and/or a decrease in GFR of >25% compared with baseline.

Chronic renal toxicity is recognisable with both laboratory evaluation of renal function and kidney biopsy in a large population of patients treated with long-term cyclosporin. Two long-term treatment studies show that the likelihood of a significant serum creatinine increase varies from 24 to 46% in patients treated with low to moderate doses of cyclosporin (up to a maximum of 5 mg/kg/ day).[127,140] Nearly all patients experienced interstitial hyalinosis when treated continuously. However, there seemed to be a rapid increase in the percentage of patients with histological changes between 2.5 and 3.5 years of treatment.[141] In all of these studies, renal toxicity was closely related to dose and to duration of treatment. Thus, it seems clear that in the treatment of psoriasis, cyclosporin dose should not exceed 5 mg/kg/day and the duration should not exceed 2 years. Serum creatinine should be monitored frequently and the dose should be adjusted if this value increases to a level greater than 25% of baseline. Recommended monitoring frequency includes: two separate occasions prior to baseline (to accurately determine baseline values), and at days 0, 15, 30 of each treatment course or after any increase in dose.[128] Interestingly, there has never been a single documented case to date of significant renal damage with the use of cyclosporin when the aforementioned guidelines have been followed.[4]

Hypertension is a very common and usually mild adverse effect reportedly seen in 8.5 to 27% of patients treated with cyclosporin for psoriasis.^[4,17,127] It is not usually seen with the short-term use of cyclosporin, but develops gradually over several months.^[25] Concern arises with a systolic blood pressure greater than 160mm Hg or a diastolic blood pressure above 95mm Hg.^[17] Reduc-

tion of dose is often sufficient for the resolution of this difficulty without the need for antihypertensive therapy. However, if antihypertensive therapy is needed, calcium channel antagonists are considered the treatment of choice since much of the renal toxicity of cyclosporin may be related to alterations in cellular calcium fluxes. [17] If these options fail to control the hypertension, cyclosporin should be discontinued.

Cyclosporin has been used as an immunosuppressant in transplant patients along with other immunosuppressants at higher doses than those used for psoriasis.[129] Reports of cyclosporin associated malignancies in transplant patients are well documented and not uncommon in this context. Cutaneous malignancies including SCC and basal cell carcinoma have been reported.[142,143] Melanoma has been reported in patients receiving cyclosporin, but a causal relationship is not established.[144] Other reported malignancies include: renal carcinoma, hepatocellular carcinoma, gastrointestinal tumours, respiratory tumours, urogenital tumours and lymphoproliferative disorders.^[142,145] Cyclosporin, at the low doses used for the treatment of psoriasis, has not been directly linked to any increased incidence of skin cancers or internal malignancies if used for no more than 2 years.^[4] However, the risk for NMSC does increase for patients who have received cyclosporin and who have a history of extensive PUVA therapy. [146]

5. Combination Therapies

Combined systemic treatment can be useful when systemic monotherapy is not effective. It is important to select agents that differ in their mechanism for potential synergy. Moreover, if two medications have differing toxicities, the combination of agents may allow for lower doses of each therapy, thereby potentially reducing adverse effects. As mentioned above, retinoids can be effectively combined with phototherapy. Methotrexate may be effectively combined with topicals treatments or cyclosporin. However, care should be taken not to increase potential toxicity by the use of combination therapy. For example, it is not advisable to use PUVA in combination with cyclo-

sporin, since it may have limited efficacy and cyclosporin is a potent immunosuppressant, which may potentiate PUVA-induced skin tumours. [146,147] The combination of acitretin and cyclosporin can be effective, but must be limited to no more than 1 year because of the cumulative adverse effects, specifically renal toxicity. [91] Though many psoriasis experts discourage combining acitretin and methotrexate, an increase in hepatotoxicity when combining these medications has not been seen. [148,149] Further data on this combination needs to be established prior to establishing its safety.

6. Rotational Strategies

Rotational therapies can be quite useful when aiming to limit the cumulative toxicities of the different agents by having long periods off each therapy. Weinstein and White^[150] recommend that each of the available systemic therapies should be rotated every 1 to 2 years, thereby allowing 4 to 6 years to pass before having to return to the first treatment. In general, while rotating to a new therapy, the first drug is gradually tapered while introducing the next medication. Rotating to a new therapy is warranted with a new flare, when the drug becomes ineffective, gives intolerable adverse effects, or when the cumulative dose nears toxic levels. Methotrexate and PUVA should not be given on the same day during the overlap phase in order to avoid phototoxicity.[151] Rotating from PUVA to cyclosporin is not advised because of the subsequent immunosuppression with cyclosporin after PUVA will increase the risk of skin cancer.[146] A rotation of cyclosporin to PUVA is theoretically acceptable because after discontinuation of lowdose cyclosporin, the immunosuppression is stopped. Retinoids have been viewed as 'bridging' compounds and when rotating from one therapy to another, they are initiated in low doses and can sustain an acceptable remission for 3 to 9 months. [151]

7. Conclusion

It is inevitable that each of the current systemic therapies used for the treatment of plaque-type

psoriasis is not without certain serious risks and unpleasant adverse effects. Patients must be evaluated on an individual basis and a benefit-risk analysis performed. With regard to combination therapies, it is important to pair drugs with different mechanisms of action that target two or more pathways of inhibition within the cells not only to limit adverse effects, but to provide a potential synergistic effect. Rotational strategies are especially useful in helping to reduce the cumulative toxicities of the different agents. Tolerability of these systemic agents, in general, is improved by appropriate patient selection, symptomatic treatment, careful follow-up, and patient reassurance.

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the contents of this manuscript.

References

- Morison WL. PUVA photochemotherapy: In: Kulp-Shorten CL, Wolverton SE, editors. Comprehensive dermatologic drug therapy. Philadelphia (PA): WB Saunders Company, 2001: 311-25
- Callen JP. Methotrexate. In: Kulp-Shorten CL, Wolverton SE, editors. Comprehensive dermatologic drug therapy. Philadelphia (PA): WB Saunders Company, 2001: 147-64
- Nguyen EQH. Systemic retinoids. In: Kulp-Shorten CL, Wolverton SE, editors. Comprehensive dermatologic drug therapy. Philadelphia (PA): WB Saunders Company, 2001: 269-310
- Koo J. Cyclosporine and related drugs. In: Kulp-Shorten CL, Wolverton SE, editors. Comprehensive dermatologic drug therapy. Philadelphia (PA): WB Saunders Company, 2001: 205-29
- 5. de Jong EM. The course of psoriasis. Clin Dermatol 1997; 15 (5): 687-92
- Khachemoune A, Phillips TJ. Current treatment options in psoriasis. Hosp Pract (Off Ed) 2000; 35 (7): 93-4, 107
- Zitnik RJ, Cooper Jr JA. Pulmonary disease due to antirheumatic agents. Clin Chest Med 1990; 11 (1): 139-50
- Gonzalez E. PUVA for psoriasis. Dermatol Clin 1995; 13 (4): 851-66
- Peters BP, Weissman FG, Gill MA. Pathophysiology and treatment of psoriasis. Am J Health Syst Pharm 2000; 57 (7): 645-59
- Murray HE, Anhalt AW, Lessard R, et al. A 12-month treatment of sever psoriasis with acitretin: results of a Canadian open multicentre study. J Am Acad Dermatol 1991; 24 (4): 598-602
- Abel EA. Phototherapy: UVB and PUVA. Cutis 1999; 64 (5): 339-42
- Bolognia JL, Freije L, Amici L, et al. Rectal suppositories of 8-methoxsalen produce fewer gastrointestinal side effects than the oral formulation. J Am Acad Dermatol 1996; 35 (3 Pt 1): 424-7

- Linden KG, Weinstein GD. Psoriasis: current perspectives with an emphasis on treatment. Am J Med 1999; 107 (6): 595-605
- Filipe P, Emerit I, Alaoui YA, et al. Oxyradical-mediated clastogenic plasma factors in psoriasis: increase in clastogenic activity after PUVA. Photochem Photobiol 1997; 66 (4): 497-501
- Dowdy MJ, Nigra TP, Barth WF. Subacute cutaneous lupus erythematosus during PUVA therapy for psoriasis: case report and review of the literature. Arthritis Rheum 1989; 32 (3): 343-6
- Matovic L, Poljacki M, Duran V, et al. The Koebner phenomenon, a prognostic sign of PUVA therapy effectiveness in patients with psoriasis vulgaris: yes or no? Med Pregl 1999; 52 (11-12): 437-40
- Georgouras KE, Zagarella SS, Cains GD, et al. Systemic treatment of severe psoriasis. Australas J Dermatol 1997; 38 (4): 171-80
- 18. See JA, Weller P. Ocular complications of PUVA therapy. Australas J Dermatol 1993; 34 (1): 1-4
- Stern RS, Laird N. The carcinogenic risk of treatments for severe psoriasis: photochemotherapy follow-up study. Cancer 1994; 73 (11): 2759-64
- Mali-Gerrits MG, Gaasbeek D, Boezeman J, et al. Psoriasis therapy and the risk of skin cancers. Clin Exp Dermatol 1991; 16 (2): 85-9
- Stern RS, Lunder EJ. Risk of squamous cell carcinoma and methoxsalen (psoralen) and UV-A radiation (PUVA): a metaanalysis. Arch Dermatol 1998; 134 (12): 1582-5
- 22. Chuang TY, Heinrich LA, Schultz MD, et al. PUVA and skin cancer: a historical cohort study on 492 patients. J Am Acad Dermatol 1992; 26 (2 Pt 1): 173-7
- 23. Lindelof B, Sigurgeirsson B, Tegner E, et al. PUVA and cancer risk: the Swedish follow-up study. Br J Dermatol 1999; 141 (1): 108-12
- Zachariae H, Kragballe K, Sogaard H. Methotrexate induced liver cirrhosis: studies including serial liver biopsies during continued treatment. Br J Dermatol 1980; 102 (4): 407-12
- Koo J. Systemic sequential therapy of psoriasis: a new paradigm for improved therapeutic results. J Am Acad Dermatol 1999; 41 (3 Pt 2): S25-8
- Hecker D, Worsley J, Yueh G, et al. Interactions between tazarotene and ultraviolet light. J Am Acad Dermatol 1999; 41 (6): 927-30
- Stern RS, Lange R. Non-melanoma skin cancer occurring in patients with PUVA five to ten years after first treatment. J Invest Dermatol 1988; 91 (2): 120-4
- Stern RS, Momtaz K. Skin typing for assessment of skin cancer risk and acute response to UV-B and oral methoxsalen photochemotherapy. Arch Dermatol 1984; 120 (7): 869-73
- Marrot L, Belaidi JP, Meunier JR, et al. The human melanocyte as a particular target for UVA radiation and an endpoint for photoprotection assessment. Photochem Photobiol 1999; 69 (6): 686-93
- Ley RD. Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica. Cancer Res 1997; 57 (17): 3682-4
- Stern RS. Genital tumors among men with psoriasis exposed to psoralens and ultraviolet A radiation (PUVA) and ultraviolet B radiation: the photochemotherapy follow-up study. N Engl J Med 1990; 322 (16): 1093-7
- Brown FS, Burnett JW, Robinson Jr HM. Cutaneous carcinoma following psoralen and long-wave ultraviolet radiation (PUVA) therapy for psoriasis. J Am Acad Dermatol 1980; 2 (5): 393-5

- Sina B, Adrian RM. Multiple keratoacanthomas possibly induced by psoralens and ultraviolet A photochemotherapy. J Am Acad Dermatol 1983; 9 (5): 686-8
- Wolff K. Should PUVA be abandoned? N Engl J Med 1997;
 336 (15): 1090-1
- 35. Wang SQ, Setlow R, Berwick M, et al. Ultraviolet A and melanoma: a review. J Am Acad Dermatol 2001; 44 (5): 837-46
- Hitchins VM, Withrow TJ, Olvey KM, et al. The cytotoxic and mutagenic effects of UVA radiation on L5178Y mouse lymphoma cells. Photochem Photobiol 1986; 44 (1): 53-7
- Lundgren K, Wulf HC. Cytotoxicity and genotoxicity of UVA irradiation in Chinese hamster ovary cells measured by specific locus mutations, sister chromatid exchanges and chromosome aberrations. Photochem Photobiol 1988; 47 (4): 559-63
- Jones CA, Huberman E, Cunningham ML, et al. Mutagenesis and cytotoxicity in human epithelial cells by far- and nearultraviolet radiations: action spectra. Radiat Res 1987; 110 (2): 244-54
- Wells RL, Han A. Action spectra for killing and mutation of Chinese hamster cells exposed to mid- and near-ultraviolet monochromatic light. Mutat Res 1984; 129 (2): 251-8
- Wenczl E, Van der Schans GP, Roza L, et al. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J Invest Dermatol 1998; 111 (4): 678-82
- Drobetsky EA, Turcotte J, Chateauneuf A. A role for ultraviolet A in solar mutagenesis. Proc Natl Acad Sci U S A 1995; 92 (6): 2350-4
- Setlow RB, Grist E, Thompson K, et al. Wavelengths effective in induction of malignant melanoma. Proc Natl Acad Sci U S A 1993; 90 (14): 6666-70
- Swerdlow AJ, Weinstock MA. Do tanning lamps cause melanoma? An epidemiologic assessment. J Am Acad Dermatol 1998; 38 (1): 89-98
- 44. Westerdahl J, Ingvar C, Masback A, et al. Risk of cutaneous malignant melanoma in relation to use of sunbeds: further evidence for UV-A carcinogenicity. Br J Cancer 2000; 82 (9): 1593-9
- Wolf P, Schollnast R, Hofer A, et al. Malignant melanoma after psoralen and ultraviolet A (PUVA) therapy. Br J Dermatol 1998; 138 (6): 1100-1
- Stern RS, Nichols KT, Vakeva LH. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA): the PUVA follow-up study. N Engl J Med 1997; 336 (15): 1041-5
- 47. Stern RS. The risk of melanoma in association with long-term exposure to PUVA. J Am Acad Dermatol 2001; 44 (5): 755-61
- 48. Whitmore SE, Morison WL. Melanoma after PUVA therapy for psoriasis. N Engl J Med 1997; 337 (7): 502-3
- Rahman P, Gladman DD, Schentag CT, et al. Excessive paternal transmission in psoriatic arthritis. Arthritis Rheum 1999; 42 (6): 1228-31
- Jeffes III EW, Weinstein GD. Methotrexate and other chemotherapeutic agents used to treat psoriasis. Dermatol Clin 1995; 13 (4): 875-90
- Weinstein GD, Goldfaden G, Frost P. Methotrexate: mechanism of action on DNA synthesis in psoriasis. Arch Dermatol 1971; 104 (3): 236-43
- Parnham MJ. Antirheumatic agents and leukocyte recruitment: new light on the mechanism of action of oxaceprol. Biochem Pharmacol 1999; 58 (2): 209-15
- Zachariae H, Grunnet E, Sogaard H. Liver biopsy in methotrexate-treated psoriatics: a re-evalution. Acta Derm Venereol 1975; 55 (4): 291-6
- Nyfors A. Liver biopsies from psoriatics related to methotrexate therapy: 3. Findings in post-methotrexate liver biopsies

- from 160 psoriatics. Acta Pathol Microbiol Scand [A] 1977; 85 (4): 511-8
- Robinson JK, Baughman RD, Auerbach R, et al. Methotrexate hepatotoxicity in psoriasis: consideration of liver biopsies at regular intervals. Arch Dermatol 1980; 116 (4): 413-5
- 56. Zachariae H, Sogaard H. Methotrexate-induced liver cirrhosis: a follow-up. Dermatologica 1987; 175 (4): 178-82
- Roenigk Jr HH, Auerbach R, Maibach H, et al. Methotrexate in psoriasis: consensus conference. J Am Acad Dermatol 1998; 38 (3): 478-85
- 58. Malatjalian DA, Ross JB, Williams CN, et al. Methotrexate hepatotoxicity in psoriatics: report of 104 patients from Nova Scotia, with analysis of risks from obesity, diabetes and alcohol consumption during long term follow-up. Can J Gastroenterol 1996; 10 (6): 369-75
- Weinstein G, Roenigk H, Maibach H, et al. Psoriasis-liver methotrexate interactions. Arch Dermatol 1973; 108: 36-42
- Lanse SB, Arnold GL, Gowans JD, et al. Low incidence of hepatotoxicity associated with long-term, low-dose oral methotrexate in treatment of refractory psoriasis, psoriatic arthritis, and rheumatoid arthritis: an acceptable risk/benefit ratio. Dig Dis Sci 1985; 30 (2): 104-9
- Boffa MJ, Chalmers RJ, Haboubi NY, et al. Sequential liver biopsies during long-term methotrexate treatment for psoriasis: a reappraisal. Br J Dermatol 1995; 133 (5): 774-8
- Dooren-Greebe RJ, Kuijpers AL, Mulder J, et al. Methotrexate revisited: effects of long-term treatment in psoriasis. Br J Dermatol 1994; 130 (2): 204-10
- 63. Newman M, Auerbach R, Feiner H, et al. The role of liver biopsies in psoriatic patients receiving long-term methotrexate treatment: improvement in liver abnormalities after cessation of treatment. Arch Dermatol 1989; 125 (9): 1218-24
- van de Kerkhof PC, Hoefnagels WH, van Haelst UJ, et al. Methotrexate maintenance therapy and liver damage in psoriasis. Clin Exp Dermatol 1985; 10 (3): 194-200
- Zachariae H. Liver biopsies and methotrexate: a time for reconsideration? J Am Acad Dermatol 2000; 42 (3): 531-4
- Boffa MJ, Smith A, Chalmers RJ, et al. Serum type III procollagen aminopeptide for assessing liver damage in methotrexate-treated psoriatic patients. Br J Dermatol 1996; 135 (4): 538-44
- Zachariae H, Aslam HM, Bjerring P, et al. Serum aminoterminal propeptide of type III procollagen in psoriasis and psoriatic arthritis: relation to liver fibrosis and arthritis. J Am Acad Dermatol 1991; 25 (1 Pt 1): 50-3
- Casserly CM, Stange KC, Chren MM. Severe megaloblastic anemia in a patient receiving low-dose methotrexate for psoriasis. J Am Acad Dermatol 1993; 29 (3): 477-80
- 69. Wolverton SE. Systemic drug therapy for psoriasis: the most critical issues. Arch Dermatol 1991; 127 (4): 565-8
- Morgan SL, Baggott JE, Vaughn WH, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1990; 33 (1): 9-18
- van Ede AE, Laan RF, Rood MJ, et al. Effect of folic or folinic acid supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: a forty-eight week, multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum 2001; 44 (7): 1515-24
- Abel EA, Farber EM. Pancytopenia following low-dose methotrexate therapy [editorial]. JAMA 1988; 259 (24): 3612
- Thomas DR, Dover JS, Camp RD. Pancytopenia induced by the interaction between methotrexate and trimethoprim-sulfamethoxazole. J Am Acad Dermatol 1987; 17 (6): 1055-6

- Shiroky JB, Frost A, Skelton JD, et al. Complications of immunosuppression associated with weekly low dose methotrexate. J Rheumatol 1991; 18 (8): 1172-5
- Kamel OW, van de RM, Weiss LM, et al. Brief report: reversible lymphomas associated with Epstein-Barr virus occurring during methotrexate therapy for rheumatoid arthritis and dermatomyositis. N Engl J Med 1993; 328 (18): 1317-21
- Ellman MH, Hurwitz H, Thomas C, et al. Lymphoma developing in a patient with rheumatoid arthritis taking low dose weekly methotrexate. J Rheumatol 1991; 18 (11): 1741-3
- Santana V, Rose NR. Neoplastic lymphoproliferation in autoimmune disease: an updated review. Clin Immunol Immunopathol 1992; 63 (3): 205-13
- Marlier S, Chagnon A, Brocq O, et al. Lymphoma induced by low-dose methotrexate in rheumatoid arthritis with severe lymphopenia. Ann Med Interne (Paris) 1995; 146 (3): 206-8
- Kingsmore SF, Hall BD, Allen NB, et al. Association of methotrexate, rheumatoid arthritis and lymphoma: report of 2 cases and literature review. J Rheumatol 1992; 19 (9): 1462-5
- Liote F, Pertuiset E, Cochand-Priollet B, et al. Methotrexate related B lymphoproliferative disease in a patient with rheumatoid arthritis: role of Epstein-Barr virus infection. J Rheumatol 1995; 22 (6): 1174-8
- Viraben R, Brousse P, Lamant L. Reversible cutaneous lymphoma occurring during methotrexate therapy. Br J Dermatol 1996; 135 (1): 116-8
- Bachman TR, Sawitzke AD, Perkins SL, et al. Methotrexateassociated lymphoma in patients with rheumatoid arthritis: report of two cases. Arthritis Rheum 1996; 39 (2): 325-9
- 83. van de RM, Cleary ML, Variakojis D, et al. Epstein-Barr virus clonality in lymphomas occurring in patients with rheumatoid arthritis. Arthritis Rheum 1996; 39 (4): 638-42
- 84. Thomason RW, Craig FE, Banks PM, et al. Epstein-Barr virus and lymphoproliferation in methotrexate-treated rheumatoid arthritis. Mod Pathol 1996; 9 (3): 261-6
- 85. Paul C, Le Tourneau A, Cayuela JM, et al. Epstein-Barr virusassociated lymphoproliferative disease during methotrexate therapy for psoriasis. Arch Dermatol 1997; 133 (7): 867-71
- Phillips TJ, Jones DH, Baker H. Pulmonary complications following methotrexate therapy. J Am Acad Dermatol 1987; 16 (2 Pt 1): 373-5
- Roenigk Jr HH, Auerbach R, Maibach HI, et al. Methotrexate in psoriasis: revised guidelines. J Am Acad Dermatol 1988; 19 (1 Pt 1): 145-56
- 88. Cottin V, Tebib J, Massonnet B, et al. Pulmonary function in patients receiving long-term low-dose methotrexate. Chest 1996; 109 (4): 933-8
- 89. Madhok R, Muller SA, Dicken CH. Treatment of psoriasis with etretin: a preliminary report. Mayo Clin Proc 1987; 62 (12): 1084-9
- Geiger JM, Saurat JH. Acitretin and etretinate: how and when they should be used. Dermatol Clin 1993; 11 (1): 117-29
- 91. Roenigk Jr HH. Acitretin combination therapy. J Am Acad Dermatol 1999; 41 (3 Pt 2): S18-21
- 92. Orfanos CE. Treatment of psoriasis with retinoids: present status. Cutis 1999; 64 (5): 347-53
- 93. Abdullah AN, Keczkes K. Cutaneous and ocular side-effects of PUVA photochemotherapy: a 10-year follow-up study. Clin Exp Dermatol 1989; 14 (6): 421-4
- 94. Saurat JH. Systemic retinoids: what's new? Dermatol Clin 1998: 16 (2): 331-40
- 95. Gollnick HP. Oral retinoids: efficacy and toxicity in psoriasis. Br J Dermatol 1996; 135 Suppl. 49: 6-17
- Chou RC, Wyss R, Huselton CA, et al. A potentially new metabolic pathway: ethyl esterification of acitretin. Xenobiotica 1992; 22 (8): 993-1002

- 97. Laugier JP, de Sousa G, Bun H, et al. Acitretin biotransformation into etretinate: role of ethanol on *in vitro* hepatic metabolism. Dermatology 1994; 188 (2): 122-5
- Larsen FG, Jakobsen P, Knudsen J, et al. Conversion of acitretin to etretinate in psoriatic patients is influenced by ethanol. J Invest Dermatol 1993; 100 (5): 623-7
- Sankaranarayanan R, Mathew B. Retinoids as cancer-preventive agents. IARC Sci Publ 1996; 139: 47-59
- Lippman SM, Batsakis JG, Toth BB, et al. Comparison of lowdose isotretinoin with beta carotene to prevent oral carcinogenesis. N Engl J Med 1993; 328 (1): 15-20
- Hudson-Peacock MJ, Angus B, Farr PM. Response of PUVAinduced keratoses to etretinate. J Am Acad Dermatol 1996; 35 (1): 120-3
- 102. David M, Hodak E, Lowe NJ. Adverse effects of retinoids. Med Toxicol Adverse Drug Exp 1988; 3 (4): 273-88
- 103. Katz HI, Waalen J, Leach ÉE. Acitretin in psoriasis: an overview of adverse effects. J Am Acad Dermatol 1999; 41 (3 Pt 2): S7-S12
- 104. Goldfarb MT, Ellis CN, Voorhees JJ. Short-term and long-term considerations in the management of psoriasis with retinoids. Dermatologica 1987; 175 Suppl. 1: 100-6
- Prendiville J, Bingham EA, Burrows D. Premature epiphyseal closure: a complication of etretinate therapy in children. J Am Acad Dermatol 1986; 15 (6): 1259-62
- 106. Roenigk Jr HH. Liver toxicity of retinoid therapy. J Am Acad Dermatol 1988; 19 (1 Pt 2): 199-208
- 107. Ellis CN, Voorhees JJ. Etretinate therapy. J Am Acad Dermatol 1987; 16 (2 Pt 1): 267-91
- 108. Camuto P, Shupack J, Orbuch P, et al. Long-term effects of etretinate on the liver in psoriasis. Am J Surg Pathol 1987; 11 (1): 30-7
- 109. Roenigk Jr HH, Gibstine C, Glazer S, et al. Serial liver biopsies in psoriatic patients receiving long-term etretinate. Br J Dermatol 1985; 112 (1): 77-81
- Koo J, Nguyen Q, Gambla C. Advances in psoriasis therapy. Adv Dermatol 1997; 12: 47-72
- 111. Roenigk Jr HH, Callen JP, Guzzo CA, et al. Effects of acitretin on the liver. J Am Acad Dermatol 1999; 41 (4): 584-8
- 112. Lowe NJ, Lazarus V, Matt L. Systemic retinoid therapy for psoriasis. J Am Acad Dermatol 1988; 19 (1 Pt 2): 186-91
- 113. Gupta AK, Goldfarb MT, Ellis CN, et al. Side-effect profile of acitretin therapy in psoriasis. J Am Acad Dermatol 1989; 20 (6): 1088-93
- 114. Bartecchi CE, Mastro ER, Swarts CW. Acute hemorrhagic pancreatitis with hypertriglyceridemia. Rocky Mt Med J 1976; 73 (2): 95-8
- 115. Stamler J, Wentworth D, Neaton JD. Is relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256 (20): 2823-8
- Ader JL, Rostaing L. Cyclosporin nephrotoxicity: pathophysiology and comparison with FK-506. Curr Opin Nephrol Hypertens 1998; 7 (5): 539-45
- Lubetzki C, Sanson M, Cohen D, et al. Benign intracranial hypertension and minocycline. Rev Neurol (Paris) 1988; 144
 (3): 218-20
- 118. Moskowitz Y, Leibowitz E, Ronen M, et al. Pseudotumor cerebri induced by vitamin A combined with minocycline. Ann Ophthalmol 1993; 25 (8): 306-8
- 119. Okada N, Nomura M, Morimoto S, et al. Bone mineral density of the lumbar spine in psoriatic patients with long term etretinate therapy. J Dermatol 1994; 21 (5): 308-11
- Saurat JH. Side effects of systemic retinoids and their clinical management. J Am Acad Dermatol 1992; 27 (6 Pt 2): S23-8

- 121. Vahlquist A. Long-term safety of retinoid therapy. J Am Acad Dermatol 1992; 27 (6 Pt 2): S29-33
- Halkier-Sorensen L, Andresen J. A retrospective study of bone changes in adults treated with etretinate. J Am Acad Dermatol 1989; 20 (1): 83-7
- 123. Gerber LH, Helfgott RK, Gross EG, et al. Vertebral abnormalities associated with synthetic retinoid use. J Am Acad Dermatol 1984; 10 (5 Pt 1): 817-23
- 124. Silverman AK, Ellis CN, Voorhees JJ. Hypervitaminosis A syndrome: a paradigm of retinoid side effects. J Am Acad Dermatol 1987; 16 (5 Pt 1): 1027-39
- 125. Melnik B, Gluck S, Jungblut RM, et al. Retrospective radiographic study of skeletal changes after long-term etretinate therapy. Br J Dermatol 1987; 116 (2): 207-12
- 126. Dooren-Greebe RJ, Lemmens JA, De Boo T, et al. Prolonged treatment with oral retinoids in adults: no influence on the frequency and severity of spinal abnormalities. Br J Dermatol 1996; 134 (1): 71-6
- 127. Ho VC, Griffiths CE, Berth-Jones J, et al. Intermittent short courses of cyclosporine microemulsion for the long-term management of psoriasis: a 2-year cohort study. J Am Acad Dermatol 2001; 44 (4): 643-51
- 128. Finzi AF, Ippolito F, Panconesi E, et al. Cyclosporin therapy in psoriasis: recommendations for treatment. Italian Multicenter Study Group on Cyclosporin in Psoriasis. Dermatology 1993; 187 Suppl. 1: 38-40
- 129. Koo J, Lee J. Cyclosporine: what clinicians need to know. Dermatol Clin 1995; 13 (4): 897-907
- Koo J, Lebwohl M. Duration of remission of psoriasis therapies. J Am Acad Dermatol 1999; 41 (1): 51-9
- Korstanje MJ. How to improve the risk-benefit ratio of cyclosporin therapy for psoriasis. Clin Exp Dermatol 1992; 17 (1): 16-9
- Levell NJ, Shuster S, Munro CS, et al. Remission of ordinary psoriasis following a short clearance course of cyclosporin. Acta Derm Venereol 1995; 75 (1): 65-9
- Zachariae H, Kragballe K, Hansen HE, et al. Renal biopsy findings in long-term cyclosporin treatment of psoriasis. Br J Dermatol 1997; 136 (4): 531-5
- 134. Ruiz P, Kolbeck PC, Scroggs MW, et al. Cyclosporine therapy and the development of interstitial fibrosis in renal allografts. Transplant Proc 1988; 20 (3 Suppl. 3): 807-11
- Ruiz P, Kolbeck PC, Scroggs MW, et al. Associations between cyclosporine therapy and interstitial fibrosis in renal allografts. Transplantation 1988; 45 (1): 91-5
- Kopp JB, Klotman PE. Cellular and molecular mechanisms of cyclosporin nephrotoxicity. J Am Soc Nephrol 1990; 1 (2): 162-79
- 137. Hutchinson IV. An endothelin-transforming growth factor beta pathway in the nephrotoxicity of immunosuppressive drugs. Curr Opin Nephrol Hypertens 1998; 7 (6): 665-71
- 138. Finn WF. FK506 nephrotoxicity. Ren Fail 1999; 21 (3-4): 319-29

- Powles AV, Cook T, Hulme B, et al. Renal function and biopsy findings after 5 years' treatment with low-dose cyclosporin for psoriasis. Br J Dermatol 1993; 128 (2): 159-65
- 140. Laburte C, Grossman R, Abi-Rached J, et al. Efficacy and safety of oral cyclosporin A (CyA; Sandimmun) for longterm treatment of chronic severe plaque psoriasis. Br J Dermatol 1994; 130 (3): 366-75
- 141. Lowe NJ, Wieder JM, Rosenbach A, et al. Long-term low-dose cyclosporine therapy for severe psoriasis: effects on renal function and structure. J Am Acad Dermatol 1996; 35 (5 Pt 1): 710-9
- London NJ, Farmery SM, Will EJ, et al. Risk of neoplasia in renal transplant patients. Lancet 1995; 346 (8972): 403-6
- 143. Hiesse C, Kriaa F, Rieu P, et al. Incidence and type of malignancies occurring after renal transplantation in conventionally and cyclosporine-treated recipients: analysis of a 20-year period in 1600 patients. Transplant Proc 1995; 27 (1): 972-4
- Kohler LD, Kautzky F, Vogt HJ. Multiple cutaneous neoplasms in cyclosporine therapy after kidney transplantation. Hautarzt 1995; 46 (9): 638-42
- Chuang FR, Hsieh H, Hsu KT, et al. Increasing transplant cancer patient survival by conversion of immunosuppressive agents. Transplant Proc 1996; 28 (3): 1346-7
- 146. Marcil I, Stern RS. Squamous-cell cancer of the skin in patients given PUVA and ciclosporin: nested cohort crossover study. Lancet 2001; 358 (9287): 1042-5
- Petzelbauer P, Honigsmann H, Langer K, et al. Cyclosporin A in combination with photochemotherapy (PUVA) in the treatment of psoriasis. Br J Dermatol 1990; 123 (5): 641-7
- 148. Rosenbaum MM, Roenigk Jr HH. Treatment of generalized pustular psoriasis with etretinate (Ro 10-9359) and methotrexate. J Am Acad Dermatol 1984; 10 (2 Pt 2): 357-61; 17
- 149. Vanderveen EE, Ellis CN, Campbell JP, et al. Methotrexate and etretinate as concurrent therapies in severe psoriasis. Arch Dermatol 1982; 118 (9): 660-2
- Weinstein GD, White GM. An approach to the treatment of moderate to severe psoriasis with rotational therapy. J Am Acad Dermatol 1993; 28 (3): 454-9
- 151. Menter MA, See JA, Amend WJ, et al. Proceedings of the Psoriasis Combination and Rotation Therapy Conference; 1994 Oct 7-9; Deer Valley (UT). J Am Acad Dermatol 1996; 34 (2 Pt 1): 315-21

Correspondence and offprints: Dr Kenneth B. Gordon, Department of Dermatology, Northwestern University Medical School, 675 N. St. Clair St, Suite 19-150, Chicago, IL 60611, USA.

E-mail: kbg704@northwestern.edu